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Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code. 

However: 

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in 
memory across cluster. 

● Modern machine learning (esp. Deep learning), a common big data task, 
requires heavy numeric computation. 

  Limitations of Spark

IO Bound

(large files: TBs or PBs)

Compute Bound

(many numeric computations)
SparkMapReduce

(1s of TBs, 100s of GBs)

PyTorch/TensorFlow

* this is the subjective approximation of the instructor as of February 2020.  A lot of factors at play.



● Understand a neural network as transformations on tensors.

● Understand PyTorch as a data workflow system.

○ Know the key components of PyTorch

○ Understand the key concepts around distributed neural 

network processing. 

● Execute basic pytorch on moderately large data. 

● Establish a foundation to distribute deep learning models

Spark Overview  Learning Objectives



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.
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A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A multi-dimensional matrix

Spark Overview What is a tensor?



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

Spark Overview What is a tensor?



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Examples > 2-d : 
Image definitions in terms of RGB per pixel

Image[row][column][rgb] 

Subject, Verb, Object representation of language: 
Counts[verb][subject][object]

Spark Overview What is a tensor?



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as 
well as many other data structures (dictionaries/HashMaps, 
Trees, ...etc…). 

Then, why PyTorch?

Spark Overview What is a tensor?



Efficient, high-level built-in linear algebra and machine 
learning optimization operations (i.e. transformations). 

enables complex models, like deep learning

Spark OverviewWhy Pytorch?



Efficient, high-level built-in linear algebra and machine 
learning optimization operations. 

enables complex models, deep neural networks

(Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)

Spark OverviewWhy PyTorch?
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z = wX

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)
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Efficient, high-level built-in linear algebra for neural network 
operations.

Can be conceptualized as a graph of 
operations on tensors (matrices): 

Spark OverviewPyTorch

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input)
w= torch.random.randn(X.shape, 1) #weights
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, torch.Tensor(y))
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Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 
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Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach



Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

Animation: Alec Radford
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Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Computational Graph!



Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square L

L = (y - 𝛽x)2



Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Hyperbolic tangent: tanh(z) = (e2z - 1) / (e2z + 1)

Spark OverviewActivations
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𝛽

MatMul Subtract

y

Square
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f: ReLU
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Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

import torch
from torch import nn 

x = torch.Tensor(input_features)
y = torch.Tensor(input_scores)
beta = torch.random.randn(X.shape, 1)
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, y)



Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

Spark OverviewPyTorch Demo 

https://adithya8.github.io/assets/cse545-sp23/intro_pytorch_linear_regression.txt
https://adithya8.github.io/assets/cse545-sp23/intro_nn_linear_regression.txt


building blocks (torch.nn)
  predefined layers; e.g.:
    .Linear, .ReLu,   
  .MSELoss, .Transformer
  .CrossEntropyLoss

torch.Tensor
useful attributes:
   dtype: data type ('torch.float32')
   shape: tensor size
   device: where to store

operations (torch. )
 computation on tensors, e.g. :
 +, *, .floor, .abs
  .sum, .max, .mean, 
  .matmul, .unique

nn.Module
__init__
forward
(graph)

Spark Overview  Ingredients of PyTorch
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https://pytorch.org/docs/stable/torch.html#math-operations
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
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Spark Overview  Ingredients of PyTorch
class ToyModel(nn.Module): #Pytorch: graph example
    def __init__(self):

   #initialize all nn objects:
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 1)

    def forward(self, x):
   #define graph

        x = self.relu(self.net1(x))
        return self.net2(x)

https://pytorch.org/docs/stable/nn.html#
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/torch.html#math-operations
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https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
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class ToyModel(nn.Module): #Pytorch: graph example
    def __init__(self):

   #initialize all nn objects:
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 1)

    def forward(self, x):
   #define graph

        x = self.relu(self.net1(x))
        return self.net2(x)

…
tm =ToyModel()

#training loop
for i in range(num_iters):
    …
    y_pred = tm(x)

    nn.MSELoss(y_pred, y)

   …

https://pytorch.org/docs/stable/nn.html#
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/torch.html#math-operations
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https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear


Typical use-case: (Supervised Machine Learning)
Determine weights, W,  of a function, f , such that |ε| is minimized:  f(X|W) = Y  + ε
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Typical use-case: 
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ε

W  determined through gradient descent:  
    back propagating error across the network that defines f.  

Spark Overview PyTorch

f  given w
1 

, w
2
...., w

p 

(typically, p >=  m)

f(X|W) = Ŷ 
ε = Ŷ  - Y
f(X|W) = Ŷ  

Y = (X|W) +  ε
Y = Ŷ  +  ε
ε = Ŷ  - Y



X
1
      X

2
      X

3
         Y           

X
1

(1)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         Y(1)

  X
13

      X
14

      X
15       

...     X
m

Typical use-case: 
Determine weights, W,  of a function, f , such that |ε| is minimized:  f(X|W) = Y  + 

ε

W  determined through gradient descent:  
    back propagating error across the network that defines f.  

Spark Overview PyTorch

f  given w
1 

, w
2
...., w

p 

(typically, p >=  m)

           

X
1

(2)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         Y(2)

  X
13

      X
14

      X
15       

...     X
m

        

X
1

(3)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         Y(3)

  X
13

      X
14

      X
15       

...     X
m

        

X
1

(4)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         Y(4)

  X
13

      X
14

      X
15       

...     X
m

        

X
1

(...)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         ...

  X
13

      X
14

      X
15       

...     X
m

        

X
1

(N)      X
2
      X

3
     X

4
     X

5
      X

6
    X

7
      X

8
      X

9       
X

10
    X

11
    X

12
         Y(N)

  X
13

      X
14

      X
15       

...     X
m

minimizes ε on N training examples 

f(X|W) = Ŷ 
ε = Ŷ  - Y
f(X|W) = Ŷ  
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TensorFlow has built-in ability to derive gradients given a cost function. 

  tf.gradients(cost, [params])
(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Spark Overview  Weights Derived from Gradients

=|ε|



Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update?

(for gradient descent) “learning rate” 

Spark Overview  Weights Derived from Gradients



Linear Regression: Trying to find “betas” that minimize: 

Thus: 

In standard linear equation: 

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply

Spark Overview  Weights Derived from Gradients



Time to train Bert Large (330 M) on K80, which is 530 times smaller 

than GPT3

Spark OverviewHow to train GPT3?

Dave Troiano, 2020 

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training


Time to train Bert Large (330 M) on K80, which is 530 times smaller 

than GPT3

For the same amount of data, GPT3 can be trained in 212k mins = 

3533 hours = 147 days* 

Spark OverviewHow to train GPT3?

*GPT3 wont fit into the memory of a single K80
Dave Troiano, 2020 

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training


Time to train Bert Large (330 M) on K80, which is 530 times smaller 

than GPT3

Spark OverviewHow to train GPT3?

Dave Troiano, 2020 

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training


Options for Distributing ML
1. Distribute copies of entire dataset 

a. Train over all  with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 

Spark Overview  Options for distribution
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Options for Distributing MLSpark Overview  Options for distribution
1. Distribute copies of entire dataset 

a. Train over all  with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound;  Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce
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3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 

Done often in practice. Not 
talked about much because it’s 
mostly as easy as it sounds. 

Preferred method for big data or 
very complex models (i.e. 
models with many internal 
parameters).
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b. Train different folds per worker node.

Pro: Easy; Good for compute-bound;  Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 

Done often in practice. Not 
talked about much because it’s 
mostly as easy as it sounds. 

Preferred method for big data or 
very complex models (i.e. 
models with many internal 
parameters).

Data Parellelism

Model Parellelism



● Parallelism :

○ Data Parallelism

○ Model Parallelism

○ Hybrid

Spark OverviewDistributed Training



● Data Parallelism: Scatter dataset into parts across different 

workers to train on subsets and sync gradients 

Spark OverviewDistributed PyTorch Training



● Data Parallelism: Scatter dataset into parts across different 

workers to train on subsets and sync gradients 

● Modes of Data Parallelism :

○ DataParallel

○ DistributedDataParallel

Spark OverviewDistributed PyTorch Training



Data Parallel: How it works?

Spark OverviewDistributed PyTorch Training

https://erickguan.me/2019/pytorch-parallel-model

https://erickguan.me/2019/pytorch-parallel-model


● Data Parallel

○ Most simple form of parallelism with minimal code change

○ Downside: Slower form of parallelism - involves inter node 

communication 3x per training step

Spark OverviewDistributed PyTorch Training



DistributedDataParallel: How it works?

Spark OverviewDistributed PyTorch Training

(Li et al., 2020)

http://www.vldb.org/pvldb/vol13/p3005-li.pdf


● DistributedDataParallel 

Spark OverviewDistributed PyTorch Training

AllReduce

(Li et al., 2020)

http://www.vldb.org/pvldb/vol13/p3005-li.pdf
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● DistributedDataParallel (Li et al., 2020)

○ Efficient form of parallelism but involves a little extra code 

change*

○ Performs AllReduce on the computed gradients across all 

nodes and machines

Spark OverviewDistributed PyTorch Training

* Extra code change if you are implementing using Pytorch. It has been made extremely simple by 

pytorch-lightning

http://www.vldb.org/pvldb/vol13/p3005-li.pdf


● DistributedDataParallel (Li et al., 2020)

○ Efficient form of parallelism but involves a little extra code 

change*

○ Performs AllReduce on the computed gradients across all 

nodes and machines

○ Downside: Python pickles all objects while spawning 

multiple processes (which happens in DDP). Code might 

crash if an object is not pickle-able

Spark OverviewDistributed PyTorch Training

* Extra code change if you are implementing using Pytorch. It has been made extremely simple by 

pytorch-lightning

http://www.vldb.org/pvldb/vol13/p3005-li.pdf


Model Parallelism: Distribute layer(s) of the model into different 

machines/GPUs to train a very large network.

Spark Overview  Options for distribution: PyTorch



● Model Parallelism: Distribute layer(s) of the model into different 

machines/GPUs to train a very large network.

● Model Parallelism

○ Naive Model Parallelism

○ Pipelined Parallelism

Spark Overview  Options for distribution: PyTorch



● Naive Model Parallelism
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● Naive Model Parallelism
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Mini batch



● Naive Model Parallelism

Spark Overview  Options for distribution: PyTorch

Mini batch

Synchronous 
Gradient updates at 
the end of a batch



● Naive Model Parallelism

Spark OverviewDistributed PyTorch Training

Mini batch

Synchronous 
Gradient updates at 
the end of a batch

class ToyModel(nn.Module): #Pytorch: model_parallel_tutorial
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

    def forward(self, x):
        x = self.relu(self.net1(x.to('cuda:0')))
        return self.net2(x.to('cuda:1'))

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear


● Naive Model Parallelism

Spark OverviewDistributed PyTorch Training

Mini batch

Synchronous 
Gradient updates at 
the end of a batch

Severe under utilization of resources due to sequential dependency of the network
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Huang et al., 2019

● Pipelined Parallelism

https://arxiv.org/pdf/1811.06965.pdf


● Pipelined Parallelism
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Huang et al., 2019

Mini batch split into 
micro batches

https://arxiv.org/pdf/1811.06965.pdf


● Pipelined Parallelism
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Huang et al., 2019

Mini batch split into 
micro batches

Synchronous 
Gradient updates at 
the end of a batch

https://arxiv.org/pdf/1811.06965.pdf


● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

Huang et al., 2019

Mini batch split into 
micro batches

Synchronous 
Gradient updates at 
the end of a batch

Provides high utilization of workers while ensuring reliable + stable 
training

https://arxiv.org/pdf/1811.06965.pdf


● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

PyTorch: Model Parallel best practices

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html


● Hybrid 

○ DeepSpeed (Rasley et al., 2020) 

Spark OverviewDistributed PyTorch Training

https://dl.acm.org/doi/10.1145/3394486.3406703


Horovod is a distributed deep learning training framework.

Horovod helps scaling single GPU (worker) into multi-GPU or even 

multi-host training without no code change

Horovod on spark:  “provides a convenient wrapper around 

Horovod that makes running distributed training jobs in Spark 

clusters easy”

Spark OverviewHorovod: PyTorch     PySpark 

https://horovod.readthedocs.io/en/stable/spark_include.html


Distributed Hardware: 

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms: 

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates: 

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 



● PyTorch is workflow system, where records are always tensors
○ operations applied to tensors

● Optimized for numerical  / linear algebra 
○ automatically finds gradients
○ specification of devices

● “Easily” distributes
○ Data Parallelism
○ Model Parallelism
○ Updating Parameters: AllReduce

Spark Overview  Summary


